DETECTION PROBABILITY AND RATE TRADEOFF IN MIMO-OFDM ISAC SYSTEM WITH IMPERFECT CHANNEL INFORMATION

Sidong Guo¹, Xiangyu Li^{2,3}, Qingqing Wu², Bodong Shang³ ¹SCHOOL OF ELECTRICAL & COMPUTER ENGINEERING, GEORGIA INSTITUTE OF TECHNOLOGY, ATLANTA, USA ²DEPARTMENT OF ELECTRONIC ENGINEERING, SHANGHAI JIAO TONG UNIVERSITY, SHANGHAI, CHINA ³EASTERN INSTITUTE FOR ADVANCED STUDY, EASTERN INSTITUTE OF TECHNOLOGY, NINGBO, CHINA Wednesday, August 7, 2024

DETECTION PROBABILITY AND RATE TRADEOFF IN MIMO-OFDM ISAC SYSTEM WITH IMPERFECT CHANNEL INFORMATION

Sidong Guo¹, Xiangyu Li^{2,3}, Qingqing Wu², Bodong Shang³ ¹School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, USA ²Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China ³Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, China **SPEAKER: XIANGYU LI**

Wednesday, August 7, 2024

- Background & Motivation
- System Model
 - MIMO-OFDM ISAC Model
 - Performance Metrics
- Detection Probability Derivation
- Simulations & Numerical Results
- Conclusion

BACKGROUND AND MOTIVATION

Integrated sensing and communication (ISAC) integrates the traditionally distinct domains of

sensing and communication, enabling systems to jointly transmit data and gather valuable environmental information.

► Features

- Wireless networks with enhanced capabilities: improved environment awareness, increased resilience to interference, efficient resource utilization
- ▶ Recent researches have explored various facets: signal processing tools [Zhang et al. '21a], network and system architecture [Zhang et al. '21b], fundamental sensing and communication performance tradeoffs [Li et al. '24]
- Sensing for estimating channels, and detecting targets
- Performance bounds between communication rate and probability of detection (PD) [Liu et al. '18]

BACKGROUND AND MOTIVATION

Orthogonal frequency division multiplexing (OFDM) has garnered widespread interests as the architectural backbone for communication-centric ISAC systems.

► Features

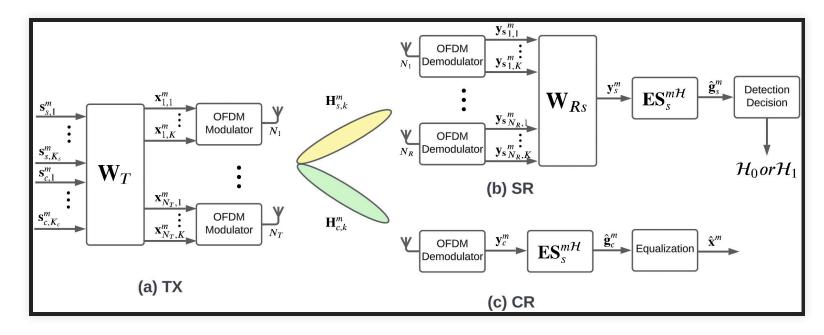
- OFDM-based ISAC systems can achieve performance on par with sensing-centric systems, using dual-functional waveform for communications [Gaudio et al. '19]
 - Sensing & communication signals occupy distinct frequency bands to mitigate interference, optimization typically revolves around power allocation across subcarriers
- Multiple-input multiple-output (MIMO) involves beamforming techniques
 - MIMO Enables power allocations for beams directed towards both sensing receiver (SR) and communication receiver (CR)

► Observation

- Characterization of PD and rate of MIMO-OFDM-based ISAC systems remains limited
- Existing literature mainly focuses on Shannon capacity as performance metric of communication rate: It overlooks impact of imperfect channel information on detection performance and capacity

Question

- ► What are tradeoffs in ISAC incurred by joint power allocations across both multi-beam and subcarriers?
- ► What is the joint performance bound when considering capacity with MMSE channel estimation?



- Background & Motivation
- System Model
 - **MIMO-OFDM ISAC Model**
 - Performance Metrics
- Detection Probability Derivation
- Simulations & Numerical Results
- ► Conclusion

System Model

Non-collocated bi-static ISAC model based on MIMO-OFDM

- ► $K \times 1$ OFDM block with superposition waveform model: $\mathbf{x}^m = \mathbf{s}_c^m + \mathbf{s}_s^m$ with power constraints $\|\mathbf{s}_{s}\|^{2} = PP_{s}, \|\mathbf{s}_{c}\|^{2} = PP_{c}.$
- $N_T \times 1$ equivalent symbol vector on OFDM subcarrier k: [Pucci et al. '22] $\mathbf{x}_k^m = \mathbf{w}_T x_k^m = \Big(\sqrt{
 ho} \mathbf{w}_{Ts} + \sqrt{1ho} \mathbf{w}_{Tc}\Big) x_k^m$ $\mathbf{w}_{Tc} = \frac{\sqrt{P_E}}{\|\boldsymbol{\alpha}^T(\theta_{Tc})\|_1} \boldsymbol{\alpha}^*(\theta_{Tc}), \mathbf{w}_{Ts} = \frac{\sqrt{P_E}}{\|\boldsymbol{\alpha}^T(\theta_{Ts})\|_1} \boldsymbol{\alpha}^*(\theta_{Ts}), \boldsymbol{\alpha}(\theta) = [\alpha_1(\theta), \alpha_2(\theta), \dots, \alpha_N(\theta)]^T.$
- Intuition : When sensing and communication signal occupy non-overlapping frequency resources, sensing signal serves as effective pilots for channel estimation.
- Explicitly assume $|\mathcal{K}_s|$ subcarriers are allocated for sensing with dual purpose of channel estimation and detection

Sensing Receiver

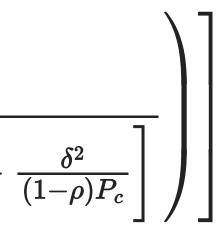
- Equivalent MIMO-OFDM system with beamforming.
- ► $K \times 1$ frequency domain symbol vector at *m*-th OFDM block: $\mathbf{y}_s^m = \sqrt{\rho} \mathbf{G}_s^m \mathbf{x}^m + \mathbf{n}^m$
- Communication Receiver
 - Equivalent MISO-OFDM system with only transmit beamforming.
 - ► $K \times 1$ frequency domain symbol vector at *m*-th OFDM block: $\mathbf{y}_c^m = \sqrt{1-\rho} \mathbf{G}_c \mathbf{x}^m + \boldsymbol{\eta}^m$
 - ► **Observation** : Both sensing and communication equivalent channels after OFDM demodulation are diagonal.

Removing Communication Interference

- Since sensing and communication signal occupy non-overlapping frequency resources, we can ensure $\mathbf{S}_s^{m\mathcal{H}}\mathbf{G}_s\mathbf{s}_c^m = \mathbf{0}$ by post-processing at the SR end, where $\mathbf{S}_s^m = \operatorname{diag}(\mathbf{s}_s^m)$, $\mathbf{g}_s = \operatorname{diag}(\mathbf{G}_s)$.
- The interference from unknown communication signal can be removed as $\mathbf{S}_{s}^{m\mathcal{H}}\mathbf{y}_{c}^{m} = \sqrt{1-\rho}\mathbf{S}_{s}^{m\mathcal{H}}\mathbf{S}_{s}^{m}\mathbf{g}_{s} + \mathbf{S}_{s}^{m\mathcal{H}}\boldsymbol{\eta}^{m}$.
- ► At CR, the estimated channels across sensing subcarriers are instead used to interpolate communication subcarrier channels.

- Background & Motivation
- System Model
 - MIMO-OFDM ISAC Model
 - Performance Metrics
- Detection Probability Derivation
- Simulations & Numerical Results
- ► Conclusion

Communication performance metrics


► Most literature assumes perfect channel knowledge, where capacity of MISO-OFDM channel is achieved with power loading:

$$C = rac{1}{K} \sum_{k \in \mathcal{K}_c} \mathcal{E} \left[\log \left(1 + rac{\left| G_k^{(c)}
ight|^2 (1 -
ho) P_k^{(c)}}{\delta^2}
ight)
ight]$$

- Intuition : Capacity with water-filling does not capture the situation with incomplete channel information
- Capacity lower bound under MMSE channel estimation provides a more realistic tradeoff between rate and detection probability

Definition (Capacity under MMSE channel estimation)

$$C_{MMSE} \geq rac{1}{K} \sum_{k \in \mathcal{K}_c} \mathcal{E} \left[\log \left(1 + rac{\left| \hat{G}_k^{(c)}
ight|^2}{\mathcal{E} \left[\left| G_k^{(c)} - \hat{G}_k^{(c)}
ight|^2 + rac{1}{C}
ight]^2}
ight]
ight]$$

- Background & Motivation
- System Model
 - MIMO-OFDM ISAC Model
 - Performance Metrics
- Detection Probability Derivation
- Simulations & Numerical Results
- Conclusion

CLOSED FORM EXPRESSION FOR PD

Proposition (Probability of Detection)

The probability of detection has the following closed form:

$$P_D = Q_{K_s} \left(\sqrt{rac{2
ho K_s (PP_s/K_s+\sigma_s^2)^2}{PP_s\sigma_s^2}} \| \mathbf{E} \mathbf{S}_s^m \mathbf{H} \mathbf{S}_s^m \mathbf{g}_s^m \|^2}, \sqrt{rac{2(\Gamma-\mu_s)^2}{PP_s\sigma_s^2}} \| \mathbf{E} \mathbf{S}_s^m \mathbf{H} \mathbf{S}_s^m \mathbf{g}_s^m \|^2}
ight)$$

where

$$\mu = K_s {
m ln} \left(rac{2 \sigma_s^2}{
ho P P_s P_E \sigma_h^2 + \sigma_s^2}
ight),$$

and

$$u = rac{\left(PP_s/K_s + \sigma_s^2
ight)^2}{\sigma_s^2 PP_s} - rac{\left(PP_s/K_s + \sigma_s^2
ight)^2}{\sigma_s^2 PP_s + rac{
ho}{2}P^2 P_s^2 P_E}$$

 $\left. rac{\mu)K_s(PP_s/K_s+\sigma_s^2)^2}{
u\sigma_s^2PP_s}
ight),$

 $\overline{\mathcal{P}_E \sigma_h^2}$

CLOSED FORM EXPRESSION FOR PD

Proposition: Sketch of proof

► Intuition : Instead of performing hypothesis testing over received symbols, channel estimations are used as test statistics

$$\hat{\mathbf{g}}_{s}^{m} = egin{cases} \mathcal{H}_{1}: \sqrt{
ho} \mathbf{E} \mathbf{S}_{s}^{m\mathcal{H}} \mathbf{S}_{s}^{m} \mathbf{g}_{s}^{m} + \mathbf{E} \mathbf{S}_{s}^{m\mathcal{H}} \mathbf{n} \ \mathcal{H}_{0}: \mathbf{E} \mathbf{S}_{s}^{m\mathcal{H}} \mathbf{n} \end{cases}$$

Formulate log-likelihood function as:

$$\ln \left[rac{f\left(\hat{\mathbf{g}}_{s}^{m}|\mathcal{H}_{1}
ight)}{f\left(\hat{\mathbf{g}}_{s}^{m}|\mathcal{H}_{0}
ight)}
ight]=\mu+
u\|\hat{\mathbf{g}}_{s}^{m}\|^{2}$$

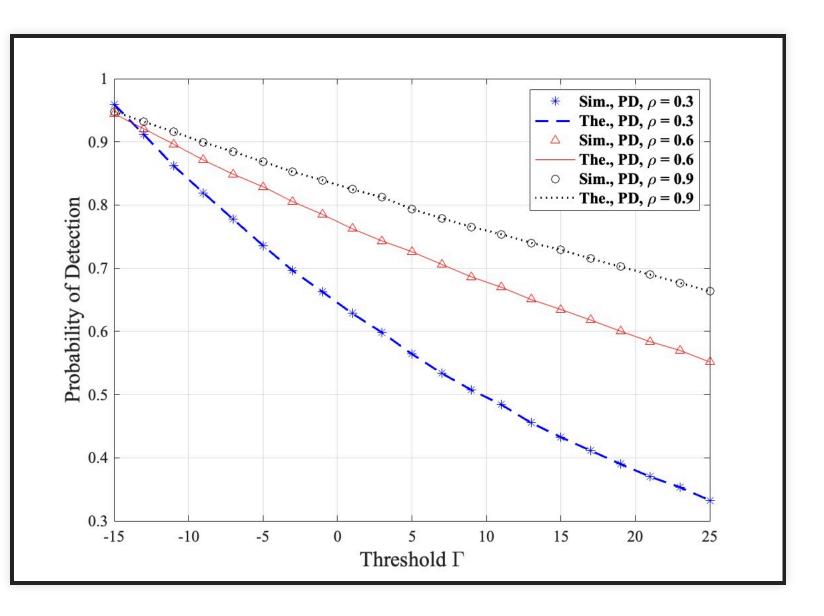
Noting that $\|\hat{\mathbf{g}}_s^m\|^2$ follows a non-central chi-squared distribution of degree $2K_s$ results in probability detection shown in Proposition and probability of false alarm (PFA) as

$$P_{FA}=Q_{K_s}\left(0,\sqrt{rac{2(\Gamma-\mu)K_s(PP_s/K_s+\sigma_s^2)^2}{
u\sigma_s^2PP_s}}
ight)$$

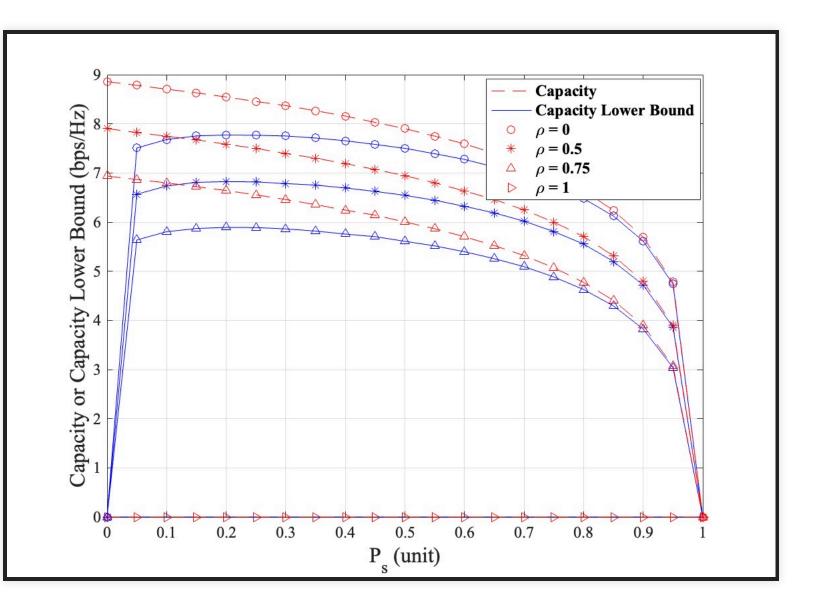
- Background & Motivation
- System Model
 - MIMO-OFDM ISAC Model
 - Performance Metrics
- Detection Probability Derivation
- Simulations & Numerical Results
- ► Conclusion

Unless otherwise noted, values for simulation parameters are summarized as follows.

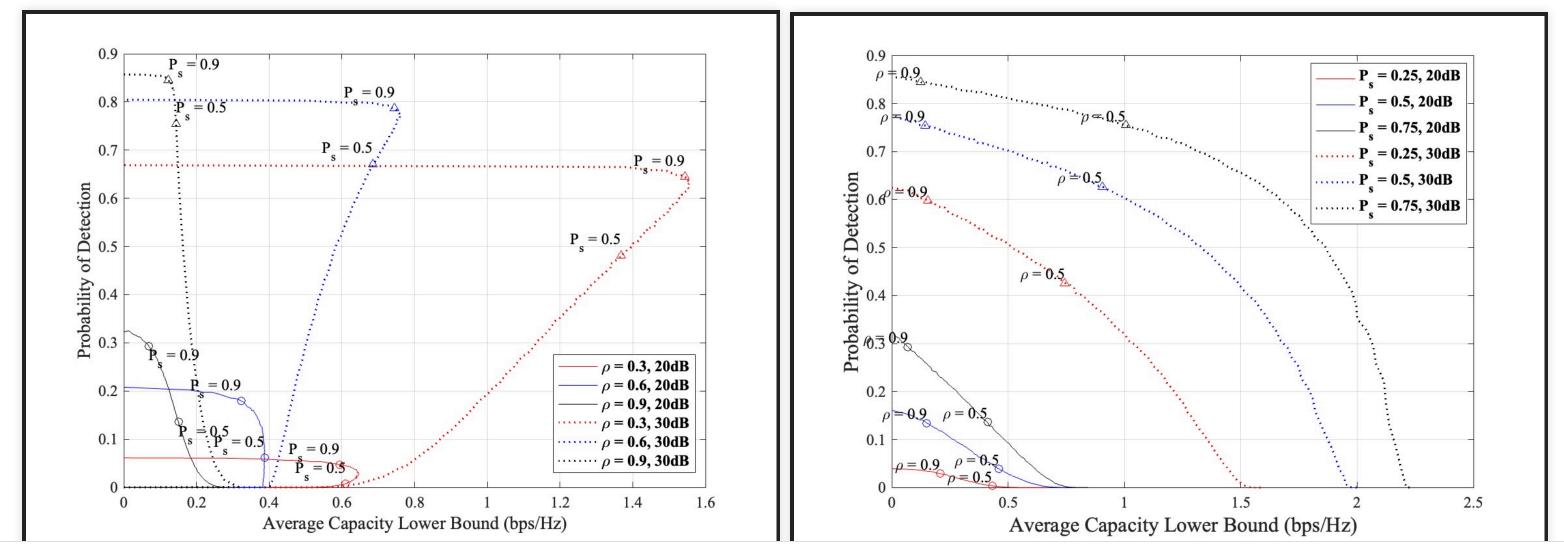
Parameter	Value
Carrier frequency f_c	3 GHz
Subcarrier frequency spacing $ riangle f$	0.59 MHz
Distance / pathloss from BS to CR/SR	100 m / 110 dB
Transmit power & EIPR	20 dBm
Modulation type	OFDM w/ QPSK
Total Subcarrier number K	64
Sensing Subcarrier number K _s	4
Noise power $\sigma_s^2 = \sigma_s^2$	-100 dBm
Height of BS h_B	30 m
Height of receive antennas h_R	1 m
Channel realizations	100, 000 times


COST231 hata model pathloss:

$$L = (44.9 - 6.55 {
m log_{10}} h_B) {
m log_{10}} d - (1.1 {
m log_{10}} f_c - 0.7) h_R + 5.83 {
m log_{10}} h_B + 300 {
m s}_{10} h_B + 300 {
m s}_{10}$$



$35.46\log_{10}f_c - 89.2~{ m dB}$


- ► Figure 2: Verification of accuracy of theoretical PD
 - ► An equivalent receive SNR of 40 dB, with a subcarrier power splitting of $P_s = 0.5$.
 - ► PD decreases with increasing detection threshold
 - ► When more power is allocated for beamforming towards SR, increasing PD can be observed since sensing subsystem receives more power

- Figure 3: Relationship between capacity metrics & P_s
 - ► An equivalent receive SNR of 40 dB, with a subcarrier power splitting of $P_s = 0.5$.
 - ► Both capacity metrics evidently see increases with decreasing ρ , as more power is used for beamforming towards CR
 - Inadequate power allocation towards sensing subcarriers \rightarrow shannon capacity fails to account for uncertainty in channel estimation \rightarrow disparity between two metrics at low P_s
 - ► Too much power allocated to sensing subcarriers, information-carrying subcarriers experience a decrease in SNR \rightarrow reduced capacity

- ► Figure 4a,4b: Pareto regions for joint performance bound of capacity lower bound & PD
 - > PD approaches 1 with increasing total transmit power & fraction of power allocated for sensing beam ρ
 - Average capacity lower bound reaches a maximum at around $P_s = 0.9$; decreases as
 - More power for sensing subcarriers leads to insufficient resources for information-bearing symbols
 - Less power results in poor channel estimation
 - Different allocations of beam power $\rho \rightarrow$ non-overlapping performance bounds

Detection Probability and Rate Tradeoff in MIMO-OFDM ISAC System With Imperfect Channel Information

- We demonstrated performance tradeoff between PD and average capacity lower bound for an ISAC system based on MIMO-OFDM
 - Optimization of joint performance bound is over fraction of power used for beamforming towards SR / CR, & fraction of power allocated for sensing / communication subcarriers.
- We considered incomplete knowledge of channel information, and derived resulting exact **PFA & PD expressions from hypothesis testing over channel estimations**
 - Joint performance bound \rightarrow influence of joint resource allocation on communication & sensing functionalities.
- Tradeoff observed
 - Beamforming power allocation between rate & PD.
 - Subcarrier power allocation for pilot & message symbols \rightarrow channel estimation quality, detection quality, and communication rate.

REFERENCES

- 1. J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zheng, and A. Petropulu, "An overview of signal processing techniques for joint communication and radar sensing," IEEE J. Sel. Top. Signal Process., vol. 15, no. 6, pp. 1295–1315, Sep. 2021
- 2. J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen, and J. Yuan, "Enabling joint" communication and radar sensing in mobile networks—A survey," IEEE Commun. Surv. Tutor., vol. 24, no. 1, pp. 306–345, Oct. 2021.
- 3. X. Li, S. Guo, and S. Malik, "Sensing-aided peer-to-peer millimeter- wave communication," Int. J. Inf. Technol., vol. 16, no. 4, pp. 2069–2075, Apr. 2024.
- 4. F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, "To- ward dual-functional radarcommunication systems: Optimal waveform design," IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, Aug. 2018
- 5. L. Gaudio, M. Kobayashi, B. Bissinger, and G. Caire, "Performance analysis of joint radar and communication using OFDM and OTFS," in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops). IEEE, May 2019, pp. 1–6.
- 6. L. Pucci, E. Matricardi, E. Paolini, W. Xu, and A. Giorgetti, "Perfor mance analysis of a bistatic joint" sensing and communication system," in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops). IEEE, Dec. 2022, pp. 73–78.

Thank You Email: sguo93@gatech.edu xiangyuli@sjtu.edu.cn